The Characteristics of Padamarang Magnesite under Calcination and Hydrothermal Treatment

Mutia Dewi Yuniati, Feronika Cinthya Mawarni Putri Wawuru, Anggoro Tri Mursito, Iwan Setiawan, Lediyantje Lintjewas


Magnesite (MgCO3) is the main source for production of magnesium and its compound. In Indonesia, magnesite is quite rare and can be only found in limited amount in Padamarang Island, Southeast Sulawesi Provence. Thus the properties of magnesite and the reactivity degree of the obtained product are of technological importance. The aim of this work was to analyze the characteristics of Padamarang magnesite under calcination and hydrothermal treatment processes. The processes were carried out at various temperatures with range of 150-900°C for 30 minutes. The solids were characterized with respect to their chemical and physical properties by using scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). SEM image indicates that magnesite was formed from thin and flat hexagon sheets. The FTIR and XRD analysis disclose that MgO formed at temperature above 300°C, where as the magnesite sample also lost its mass around 50%. These results demonstrate that Padamarang magnesite decomposes to magnesium oxide and carbon dioxide at high temperature.

Magnesit (MgCO3) merupakan sumber utama untuk produksi magnesium dan senyawa-senyawanya. Di Indonesia, magnesit cukup jarang dan hanya dapat ditemukan dalam jumlah yang terbatas di Pulau Padamarang, Propinsi Sulawesi Tenggara. Oleh karena itu sifat magnesit dan derajat reaktivitas dari produk-produk magnesit penting untuk diketahui. Penelitian ini bertujuan untuk menganalisis karakteristik magnesit Padamarang dengan perlakuan kalsinasi dan hidrothermal.  Proses dilakukan pada temperatur yang bervariasi dari 150-900°C selama 30 menit. Sifat kimia dan fisika dari magnesit dikarakterisasi dengan menggunakan scanning electron microscopy dengan energy-dispersive X-ray spectroscopy (SEM-EDX), Fourier-transform infrared spectroscopy (FTIR), dan X-ray diffraction (XRD). Gambar dari analisis SEM menunjukkan bahwa magnesit terbentuk dari lembaran-lembaran heksagonal yang tipis dan datar. Hasil analisis dengan FTIR dan XRD menunjukkan bahwa MgO terbentuk pada temperatur diatas 300°C, dimana sampel magnesit juga kehilangan massanya sekitar 50% pada suhu tersebut. Hal ini menunjukkan bahwa Magnesit Padamarang terdekomposisi menjadi magnesium oksida dan karbon dioksida pada temperatur tinggi.


Calcination, hydrothermal, magnesite, Padamarang

Full Text:



Bagheri Gh., A. And Kahaki, Z.M. 2015. Template synthesis and characteristic of nanoparticle MgO. Int. J. Nano Dimens. 6 (4). 439-442.

Bashir, E., Naseem, S., Sheikh, A.S., and Kaleem, M. 2009. Mineralogy of the Kraubath-type magnesite deposits of the Khuzdar area, Balochistan, Pakistan. Journal of the Earth Sciences Application and Research Centre of Hacettepe University. Yerbilimleri, 30 (3), 169–180.

Deer, W.A., Howie, R.A., and Zussman J. 1992. An introduction to the rock-forming minerals, second ed. Longmans, Green and Co. Ltd, London.

Gartzos, E. 2004. Comparative stable isotopes study of the magnesite deposits of Greece. Bulletin of the Geological Society of Greece, 36, 196-203.

Indian Bureau of Mines. 2017. Magnesite, in Indian Mineral Yearbook 2015, Part-III: Mineral reviews, 54th ed. Goverment of India, Ministry of Mines, Nagpur. (accessed July 30th 2018).

Ma, X., Lu, G., and Yang, B. 2002. Study of the luminescence characteristic of cadmium sulfide quantum dots in a sulfonic group polyaniline (SPAn) film. Appl. Surf. Sci. 187, 235-238.

Sadik, C., Moudden, O., El Bouari, A., and El Amrani, I. 2016. Review on the elaboration and characterization of ceramics refractories based on magnesite and dolomite. J. As. Cer. S. 4(3), 219-233.

Sasvári, T. and Kondela, J. 2007. Demonstration of Alpine structural phenomena at the structure of magnesite deposit Jelšava - Dúbrava Massif. Metalugija, 46(2), 117-122

Savage, P.E. 1999. Organic chemical reactions in supercritical water. Chem. Rev. 99, 603–621. https://doi:10.1021/cr9700989.

Sawada, Y., Uematsu, K., Mizutani N., and Kato, M. 1978. Thermal decomposition of hydromagnesite 4MgCO3 – Mg(OH)2 – 4H2O under different partial pressures of carbon dioxide. Thermochim. Acta, 27, 45-59.

Seeger, M., Otto, W., Flick, W., Bickelhaupt, F., and Akkerman. O.S. 2005. Magnesium compounds in: Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH, Weinheim. https://doi.10.1002/14356007.a15_595.pub2.

Shand, M.A. 2006. Chapter 2: Formation and occurrence of magnesite and brucite, in: The Chemistry and Technology of Magnesia. John Wiley & Sons, New York.

Simanjuntak, T.O., Surono, and Sukido. 1993. Peta Geologi lembar Kolaka, Sulawesi, Skala 1 : 250.000. Pusat Penelitian dan Pengembangan Geologi, Bandung.

Suraji, Rasid, N., Kenyo, A.S., Jannah, A.R., Wulandari, D.R., Saefudin, M., Ashari, M., Widiastutik, R., Kuhaja, T., Juliyanto, E., Afandi, Y.A., Wiyono, B., Syafrie, H., Handayani, S.N., and Taufik. 2015. Profil Kawasan Konservasi Provinsi Sulawesi Tenggara, Direktorat Konservasi Kawasan dan Jenis Ikan, Direktorat Jenderal Kelautan, Pesisir dan Pulau-Pulau Kecil (Kementerian Kelautan dan Perikanan, Jakarta) pp. 1-63.

Weast, R.C., and Lide, D.R. 1978. CRC Handbook of Chemistry and Physics, 59th ed. CRC Press, West Palm Beach, Florida. p. B-133. ISBN 0-8493-0549-8.

White, W.B. 1971. Infrared characterization of water and hydroxyl ion in the basic magnesium carbonate minerals. Am. Mineral. 56 (46-53). (accessed August 27th 2018). (accessed August 27th 2018).



  • There are currently no refbacks.

Copyright (c) 2019 RISET Geologi dan Pertambangan

Copyright of Journal RISET Geologi dan  Pertambangan (e-ISSN 2354-6638 p-ISSN 0125-9849). Powered by OJS


Indexed by:




Plagiarism checker: