Hidrokimia dan Indikasi Kontaminasi pada Air Tanah di Lereng Selatan Gunung Merapi, Mlati dan Sekitarnya, Sleman, D.I.Yogyakarta

Rahmat Satya Nugraha, Doni Prakasa Eka Putra

Abstract


Daerah Mlati - Sleman di Daerah Istimewa Yogyakarta secara hidrogeologi regional terletak pada sistem Cekungan Air Tanah (CAT) Yogyakarta-Sleman, yang secara stratigrafi terdiri dari Formasi Sleman dan Formasi Yogyakarta. Kedua formasi batuan ini membentuk sistem akuifer multilayer. Penelitian ini bertujuan untuk mengetahui karakteristik hidrokimia serta indikasi kontaminasi di Daerah Mlati. Penelitian dilakukan dalam beberapa tahapan yaitu observasi hidrogeologi lapangan, penentuan titik pengambilan sampel, pengambilan sampel air tanah dan analisis laboratorium. Hasil analisis laboratorium menunjukkan tipe air tanah pada sumur gali yang mewakili akuifer bebas didominasi oleh tipe Ca2+-Na+-HCO3- . Pada air tanah dari sumur bor dalam, tipe air didominasi oleh tipe Ca2+-Na+-HCO3--Cl-. Selain itu, diketahui bahwa kandungan besi dan mangan pada sumur bor dalam umumnya lebih tinggi daripada sumur dangkal. Indikasi kontaminasi ditunjukkan dengan adanya kandungan  nitrat pada sumur gali dengan kadar nitrat rata-rata 15 mg/l, sedangkan pada sumur bor dalam tidak dijumpai unsur nitrat. Dapat disimpulkan bahwa kedua akuifer memiliki karakteristik kimia air yang didominasi oleh unsur Ca2+-Na+-HCO3-, hanya saja pada akuifer dalam terdapat  ion klorida turut mendominasi. Adanya nitrat pada sumur gali dengan kadar nitrat rata-rata diatas 10 mg/l, menandakan bahwa sumur gali atau akuifer bebas dangkal rentan terhadap pencemaran yang bersumber dari aktivitas manusia di permukaan.

The area of Mlati - Sleman is hydrogeologically located in the Yogyakarta-Sleman Groundwater Basin (GB) system, which stratigraphically consists of the Sleman Formation and the Yogyakarta Formation. The purpose of this study is to determine the hydrochemical characteristics and indications of contamination in the Mlati Region. The research was started with the field hydrogeological observation, determination of sampling points, groundwater sampling and laboratory analysis. Based on laboratory analysis, the groundwater types in the dug wells (unconfined aquifers) were dominated by type Ca2+-Na+-HCO3- . The groundwater from deep wells was dominated by type Ca2+-Na+-HCO3--Cl-. In addition, it is known that the iron and manganese content in deep bore wells is generally higher than shallow wells. The contamination is indicated by the presence of nitrate in the dug wells with an average nitrate level of 15 mg/l, while in the deep well bore there is no element of nitrate. Therefore, we concluded that the two aquifers are dominated by the elements Ca2+-Na+-HCO3-. In the deep aquifer, the chloride ion is also dominating. The presence of nitrates in dug wells with an average nitrate level above 10 mg/l indicates that shallow wells or shallow unconfined aquifers are susceptible to pollution from human activities.


Keywords


Groundwater chemistry, Merapi Mountain, Daerah Istimewa Yogyakarta

References


Boulom, J., Putra, D. P. E., dan Wilopo, W., 2014. Chemical Composition and Hydraulic Connectivity of Springs in The Southern Slope of Merapi Volcano: J. SE Asian Appl. Geol., Jan–Jun 2014, Vol. 6(1)., 11.

Fatmawati, F., Fachiroh, J., Sutomo, A, H., dan Putra, D.P.E., 2018. Origin and Distribution of Nitrate in Water Well of Settlement Areas in Yogyakarta, Indonesia. Environmental Monitoring Assessment Journal, 190.

Fetter, C. W., 2001. Applied Hydrogeology, Fourth Edition: New Jersey, Prentice-Hall, Inc., p 346-440.

Hendrayana, H., 1993. Hydrogeologie und Grundwassergewinnung im Yogyakarta-Becken, Indonesien, Dissertation, RWTH-Aachen.

Hermawan, A., Nugrahaningsih, M., Sumarno, Mansur, M., Martanto, B., Subiyanto, F., Wirawan, S.S., 2003. Peta Provinsi Daerah Istimewa Yogyakarta: Badan Koordinasi Survei dan Pemetaan Nasional, Cibinong, Skala 1:130.000, 1 lembar.

Husein, S., dan Srijono, 2009. Peta Geomorfologi Daerah Istimewa Yogyakarta: Jurusan Teknik Geologi, Fakultas Teknik, Universitas Gadjah Mada (UGM), Yogyakarta, Skala 1:25.000, 1 lembar.

Mazor, E., 1997. Chemical and Isotopic Groundwater Hydrology 2nd edition, Mercel Dekker Inc.

McDonald dan Partners, 1984. Greater Yogyakarta Groundwater Resources Study Volume 3: Directorate General of Water Resources Development Project (P2AT), Ministry of Public Works, Government of the Republic of Indonesia, 116 p.

Putra, D. P. E., 2007. The Impact of Urbanization on Groundwater Quality; A Case Study in Yogyakarta City – Indonesia, Mitteilungen zur Ingenieurgeologie und Hydrogeologie, Heft 96, Lehrstuhl fuer Ingenieurgeologie und Hydrogeologie, RWTH Aachen, 148 S.

Stewart, C., Johnston, D. M., Leonard, G. S., Horwell, C. J., Thordarson, T., Cronin, S. J., 2006. Contamination of water supplies by volcanic ashfall: A literature review and simple impact modelling: Journal of Volcanology and Geothermal Research 158 (296-306)., 11.

Rahardjo W, Sukandarrumidi, dan Rosidi HMD, 1977. Geological map of the Yogyakarta quadrangle, Java. Geological Survey ofIndonesia, Ministry of Mines, Jakarta.

Sudarmadji, 1991. Agihan geografi sifat kimiawi airtanah bebas di Kotamadya Yogyakarta, disertasi, Universitas Gadjah Mada, Yogyakarta.




DOI: http://dx.doi.org/10.14203/risetgeotam2019.v29.1027

Refbacks



Copyright (c) 2019 RISET Geologi dan Pertambangan

Copyright of Journal RISET Geologi dan  Pertambangan (e-ISSN 2354-6638 p-ISSN 0125-9849). Powered by OJS

  

Indexed by:

     

         

 

Plagiarism checker: