ZONA PERMEABEL DI KAWAH GUNUNG PAPANDAYAN BERDASARKAN GAS RADON DAN THORON

Heri Nurohman, Hendra Bakti, Sri Indarto, Haryadi Permana, Anita Yuliyanti, Andrie Al Kausar, Eddy Z. Gaffar

Abstract


One of the methods used in geothermal exploration is to take advantage of the presence of radon in nature. In this study, we measured radon and thoron in Papandayan Volcano area, which was assumed to have a high geothermal potential. Measurements were carried out in around the crater of the volcano by using Rad7 on soil and water. The duration of measurement in each point is 15 minutes at a depth of 75 cm with a sniff mode. The result indicated that the concentration of radon gas is relatively high. The high concentration might be interpreted as the permeable zone, which associated with the zone of faults or fractures. The results also showed relatively high concentrations of radon gas around the east and the west of the crater. This concentration reflects the presence of permeable zones that may be associated with the southwest trending fault - northeast and also the presence of the caldera boundary. The continuity of permeable zone below the surface was interpreted based on the thoron- radon ratio (220Rn / 222Rn). A high ratio (indicating the source of radon shallow) found in the northern ridge of the Papandayan crater.

Salah satu metode yang digunakan dalam kegiatan eksplorasi panasbumi adalah dengan memanfaatkan keberadaan gas radon alam. Dalam penelitian dilakukan pengukuran gas radon dan thoron di lokasi Gunung Papandayan karena daerah ini diduga memiliki potensi panas bumi yang tinggi. Kegiatan pengukuran dilakukan di sekitar kawah Gunung Papandayan dengan menggunakan alat Rad7 pada media tanah dan air. Lama pengukuran pertitik adalah 15 menit pada kedalaman 75 cm dengan mode sniff. Hasil pengukuran menunjukkan konsentrasi gas radon yang relatif tinggi, yang dapat diinterpretasikan sebagai keberadaan zona permeabel, berkaitan dengan adanya zona rekahan atau patahan. Hasil pengukuran menunjukkan konsentrasi gas radon yang relatif tinggi di sekitar tebing kawah timur dan barat. Konsentrasi tersebut mencerminkan keberadaan zona permeabel, yang mungkin berasosiasi dengan patahan berarah baratdaya – timurlaut, dan juga keberadaan batas kaldera. Kemenerusan zona permeabel sampai ke bawah permukaan dianalisa berdasarkan rasio thoron/radon (220Rn/222Rn). Rasio tinggi ditemukan (menunjukkan sumber radon dangkal)  dipunggungan utara kawah Papandayan.



Keywords


Radon, Thoron, permeable zone, geothermal, Papandayan Volcano.

Full Text:

PDF

References


Alzwar, M., Akbar, N., dan Bachri, S., 1992. Peta Geologi Lembar Garut dan Pamengpeuk, Jawa. Pusat Penelitian dan Pengembangan Geologi. Bandung.

Balcazar, M., Lopez, A., Flores, M., dan Huerta, M. 2014. Natural Radiation Contribution to Renewable Energy Searching. 14 International Symposium on Solid State Dosimetry, Mexico: Sociedad Mexicana de Irradiacion y Dosimetria.

Belin, R.E., 1959. Radon in The New Zealand Geothermal Region. Geochimica et cosmochimica, 16, 181 - 191.

Cox, M.E. 1980. Ground Radon Survey of A Geothermal Area In Hawaii. Geophysical Research Letters, 7(4), 283-286.

Giammanco, S., Sims, K.W.W., dan Neri, M. 2007. Measurements of 220Rn and 222Rn and CO2 emissions in soiland fumarole gases on Mt. Etna volcano (Italy): Implications for gas transport and shallow ground fracture. Geochem. Geophys. Geosyst., 8, Q10001. DOI: 10.1029/ 2007GC001644.

Haerudin, N. Wahyudi, dan Suryanto, W., 2013. Radon and thoron analysis of soil gas survey case study of Rajabasa geothermal field. AIP Conf. Proc. 1554, 218. DOI: 10.1063/1.4820324.

Hochstein, M.P., dan Browne, P.R.L,. 2000. Surface Manifestations of Geothermal Systems with Volcanic Heat Sources. Encyclopedia of Volcanoes. Academic Press A Harcourt Science and Technology Company.

Ishimori, Y., Lange, K., Martin, P., Mayya, Y.S., Phaneuf, M., 2013. Measurement and Calculation of Radon Release from Norm Residues. International Atomic Energy Agency, Viena. STI/DOC/010/474.

Jolie, E., Klinkmueller, M., dan Moeck, I., 2015. Diffuse surface emanations as indicator of structural permeability in fault-controlled geothermal systems. Journal of Volcanology and Geothermal Research, 290, 97–113.

Lombardi, S., Pinti, D.L., Rossi, U., dan Fiordelisi, A., 1993. 222Rn In Soil Gases at Latera Geothermal Field: A Preliminary Case History. Geologica Romana, 29, 391-399.

Mazot, A., Bernard, A., Fischer, T., Inguaggiato, S., dan Sutawijaya, I.S. 2008. Chemical Evolution Of Thermal Waters and Changes In The Hydrothermal System of Papandayan Volcano (West Java, Indonesia) After the November 2002 Eruption. Journal of Volcanology and Geothermal Research, 178, 276–286.

Mismanos, J.W. dan Vasquez, A. A., 2015. Scouting for Permeable Structures in Geothermal Systems Using Soil Gas Radon. Proceedings World Geothermal Congress 2015, Melbourne, Australia.

Roba, C.A., Nita, D., Cosma, C., Codrea, V., dan Olah, S. 2012. Correlations between radium and radon occurrence and hydrogeochemical features for various. geothermal aquifers in Northwestern Romania. Geothermics, 42, 32–46.

Rodriguez, A., Torres, Y., Chavarria, L., Molina, F. 2008. Soil Gas Radon Measurements as A Tool to Identify Permeable Zones at Las Pailas Geothermal Area, Costa Rica. 30th Anniversary Workshop August 26-27, 2008, United Nations University.

Soengkono, S., 1999. Te Kopia geothermal system (New Zealand) - the relationship between its structure and Extent. Geothermics 28, 767-784.

Szabo, K. Z., Jordan, G., Horvath, A., Szabo, C., 2013. Dynamics of soil gas radon concentration in a highly permeable soil based on a long-term high temporal resolution observation series. Journal of Environmental Radioactivity 124, 74-83.

United State Geological Survey. 2013. Citra Landsat LC81220652013221LGN00. URL: http://earthexplorer.usgs.gov. US Department of Interior (download 25 Agustus 2014).

United State Geological Survey. 2014. DEM STRM 1 Arch second Jawa Barat bagian selatan. URL: http://earthexplorer. usgs.gov. US Department of Interior (download 30 Januari 2015).

Whitehead, N. E. 1984. Geothermal Prospecting by Ground Radon Measurements. Journal of Volcanology and Geothermal Research, 20, 213-229.




DOI: http://dx.doi.org/10.14203/risetgeotam2016.v26.274

Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 Jurnal RISET Geologi dan Pertambangan

Copyright of Journal RISET Geologi dan  Pertambangan (e-ISSN 2354-6638 p-ISSN 0125-9849). Powered by OJS

  

Indexed by:

   

    

 

Plagiarism checker by: