MINERALOGI BENTONIT TASIKMALAYA SEBAGAI MEDIA PENYERAP CO2 MELALUI KARBONASI HIDROTERMAL

Anita Yuliyanti, Anggoro Tri Mursito, Widodo Widodo, Syamsul Rizal Muharam

Abstract


Kristalinitas mineral kalsit yang terpresipitasi pada proses karbonasi hidrotermal dianalisis menggunakan metode XRD (X-ray diffraction) semi-kuantitatif dengan bantuan piranti lunak komersial PeakFit® serta SEM (scanning electrone microscope) untuk memperoleh ukuran kristalit dan bentuk morfologinya. Bentonit Tasikmalaya mengandung mineral-mineral potassium, kalsium, magnesium silikat berupa montmorilonit, klinoptilolit, dan anortit serta  mampu menyerap CO2 dan menyimpannya dalam bentuk mineral kalsit. Hasil analisis menunjukkan bahwa ukuran kristalit kalsit yang terbentuk mempunyai korelasi dengan prosentase gas CO2 yang terserap. Penyerapan CO2 tertinggi tercapai pada bentonit CaBK dan NaBK dengan penambahan Ca(OH)2 pada suhu rendah masing-masing sebesar 9,9% dari massa percontoh. Adapun kristalinitas mineral kalsit terbesar tercapai pada bentonit CaBK yang menghasilkan kristalit kalsit berukuran 463,36Ǻ. Hasil penelitian menunjukkan bahwa bentonit Tasikmalaya mampu menyerap CO2 dan menyimpannya dalam bentuk kalsit.

Calcite precipitated during hydrothermal carbonation process was analyzed using semi-quantitative XRD (X-ray diffraction) method, supported with commercial software PeakFit®, and SEM (scanning electrone microscope) method to study its crystallite size and morphology. Tasikmalaya bentonite consist of potassium, calcium, magnesium silicate minerals as montmorillonite, clinoptilolite, and anorthite. The result indicates that crystallite sizes correlate with absorbed CO2 percentage. The highest CO2 absorption was obtained from CaBK and NaBK bentonite with addition of 9.9% Ca(OH)2 for each sample at low temperature. Largest calcite crystallinity obtained from CaBK bentonite that resulted 463.36Ǻ crystallites size. The result indicates that Tasikmalaya bentonite has an ability to absorb and store CO2 as calcite.

 

 


Keywords


bentonite, calcite, hydrothermal carbonation, CO2.

References


Chen, R., Jakes, K. A., & Foreman, D. W., 2004. Peak-Fitting Analysis of Cotton Fiber Powder X-Ray Diffraction Spectra. Journal of Applied Polymer Science, 93(5), 2019–2024. https://doi.org/10.1002/app.20666

Christidis, G. E., & Huff, W. D., 2009. Geological Aspect and Genesis of Bentonites. Elements, 5, 93–95. DOI: 10.2113/gselements.5.2.93

Grim, R., 1968. Clay Mineralogy (2nd ed). New York: McGraw-Hill Book Company.

Iwasaki, T., Itabashi, O., Hardjatmo, Suyartono, & Goto, T., 1995. Study on utilization of Natural Zeolite (1) Zeolites and bentonites in Indonesia. No Title. Puslitbang Teknologi Mineral Dan Batubara.

Jeffery, G. H., Bassett, J., Mendham, J., & Denney, R. C., 1989. Vogel’s Textbook of Quantitative Chemical Analysis Fifth edition. New York: Longman Scientific & Technical.

Kuhnel, R. A., Roorda, H. J., & Steensma, J. J., 1975. The Crystallinity Of Minerals - A New Variable In Pedogenetic Processes : A Study Of Goethite And Associated Silicates In Laterites. Clays and Clay Minerals, 23, 349–354. Retrieved from http://www.clays.org/journal/archive/volume 23/23-5-349.pdf

Montes-Hernandez, G., Fernández-Martínez, A., Charlet, L., Tisserand, D., & Renard, F., 2008. Textural properties of synthetic nano-calcite produced by hydrothermal carbonation of calcium hydroxide. Journal of Crystal Growth, 310(11), 2946–2953. DOI: 10.1016/j.jcrysgro.2008.02.012

Ptácek, P., Nosková, M., Šoukal, F., Opravil, T., Halvica, J., & Brandštetr, J., 2007. Activation of Bentonite and Talc by Acetic Acid as a Carbonation Feedstock for Mineral Storage of CO 2. In M. A. Farrukh (Ed.), Atomic Absorption Spectroscopy (pp. 221–258). Retrieved from http://www.intechopen.com/books/atomic-absorption-spectroscopy/activation-of-bentonite-and-talc-by-acetic-acid-as-a-carbonation-feedstock-for-mineral-storage-of-co

Pusdalisbang Jawa Barat, 2015. PDF Potensi Bahan Tambang. Retrieved from http://bp2apd.jabarprov.go.id/pusdalisbang/jbrmenjawab/caridata/kategori/3. 23

Shi, J. L., Lu, C. W., Kuo, C. L., Lin, Z. X., & Yen, T. S., 1992. Determination of Crytallite Size of Superfine Zirconia Powders as a Fuction of Calcination Temperatures. Ceramics International, 18, 155–159.

Supriatna, S., Sarmili, L., Sudana, D., & Koswara, A., 1992. Peta Geologi Lembar Karangnunggal: Skala 1:100.000.

Systat Software Inc., 2013. The Automatic Choice for Spectroscopy, Chromatography and Electrophoresis, Peakfit Overview. Retrieved from http://www.sigmaplot.com/products/peakfit/peakfit.php

Takagi, T., Koh, S. M., Song, M. S., Itoh, M., & Mogi, K., 2005. Geologi and Properties of the Kawasaki and Dobuyama Bentonite Deposite of Zao Region in Northeastern Japan. Clay Minerals 40, 333–350.




DOI: http://dx.doi.org/10.14203/risetgeotam2018.v28.401

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Jurnal RISET Geologi dan Pertambangan

Copyright of Journal RISET Geologi dan  Pertambangan (e-ISSN 2354-6638 p-ISSN 0125-9849). Powered by OJS

  

Indexed by:

   

      

 

Plagiarism checker: